artdaq Utilities - Idea #14606

Implement the transition scripts called by sdaqginterface.py for high-level control of artdaq processes
11/22/2016 05:22 PM - John Freeman

Status: Resolved Start date: 11/22/2016
Priority: Normal Due date:

Assignee: John Freeman % Done: 100%
Category: artdag-dagqinterface Estimated time: 60.00 hours
Target version: Spent time: 0.00 hour
Experiment: -

Description

Recently, in artdag-utilities-sdaginterface (http:/cdcvs.fnal.gov/projects/artdag-utilities-sdaginterface), a "simple daginterface" script,
sdaginterface.py, was implemented. This script respects a set of state transitions, where for each transition, it calls a bash script in
charge of that transition. The actual implementation of the bash scripts is left to the user of sdaginterface. This Redmine Issue
describes the need for a general-purpose implementation of the scripts, so that, once an experiment has its hands on the scripts, it
should be relatively straightforward to get them to work for a specific experiment's artdag-based DAQ system. Along with the scripts
themselves, documentation on how to use them should additionally be provided.

History

#1 - 11/22/2016 05:30 PM - John Freeman
- % Done changed from 0 to 20

Work has already been done on this project; as of this writing it can be found on github, https:/github.com/jcfreeman2/DAQInterface.git , though we
should think about where to give it a permanent home. It's basically a modification of the DAQInterface python code used on the 35ton experiment; an
email describing in detail my plans for it was sent to artdag-developers@fnal.gov yesterday (Nov. 21, 2016):

Hi all,

In light of our recent discussions concerning the creation of an LRP (Long Running Process) through which
to control artdag processes, I've
begun overhauling the 35ton DAQInterface python script so as to support this effort. Essentially, it will serv
e as an intermediary between Wes's
sdaginterface.py script (found in http://cdcvs.fnal.gov/projects/artdag-utilities-sdaginterface) and the artda
g processes. To get more specific, as of
commit b49c0fac51e6972876c562£56d581£f0bcl30cfbc (dated Oct. 19) sdaginterface.py supports a state machine mode
1 of the following form:

Existing —-> "Initialize" -> Initialized -> "Boot" -> Booted -> "Config" -> Configured -> "Run" -> Running -> "
Stop" —-> Stopped -> "Shutdown" ->
Initialized -> "Terminate" -> NO STATE. This state machine doesn't match up 1-1 with the state machine support

ed in artdag v1_13_03, so

DAQInterface takes account of this, accepting the sdaginterface transitions via XML-RPC and "translating" them
into artdag transitions. How this

is done, I describe below. If you have any questions / concerns / disagreements, please let me know. For each
sdaginterface transition, I describe

things in the following format:

"Transition"
Argument (s) : # of arguments

-Description of argument #1, etc.

<<Starting State #1 -> Final State>>
Steps taken by DAQInterface when issuing transition "Transition" from Starting State #1

<<Starting State #2 -> Final State>>
Steps taken by DAQInterface when issuing transition "Transition" from Starting State #2

0 oBEECo o o
Let's begin.

L1777 70777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777177777777777
L1717 770777777777177777717777771777

"Initialize"

04/11/2021 1/3



http://cdcvs.fnal.gov/projects/artdaq-utilities-sdaqinterface
https://github.com/jcfreeman2/DAQInterface.git
mailto:artdaq-developers@fnal.gov

Argument (s): 0

<<Existing -> Initialized>>:
Launch DAQInterface (error/warning if it already exists?)

<<Initialized -> Initialized>>:
No-op (unless it doesn't exist, in which case issue warning and then launch DAQInterface)

L1777 007 777707777 77777 7777777 7777777777777777777777777777777777777777777777777777777777777777777177777777777
L1717 7 0070777007177 777717777771777

"Boot n

Argument (s) : 2+

-DAQInterface configuration file (provides # of eventbuilders and # of aggregators, location of artdag-demo bu
ild)

—Component list (names of fragment generators)

<<Initialized -> Booted>>:
Create the eventbuilders, aggregators and boardreaders via pmt.rb

L1777 077 7777077777777 77777777777777777777777777777777777777777777777777777777777777777777777777777777777777
L1777 0070777007777 7770717777771777

"Configure"

Argument (s) : 2

—Name of configuration in database

-Name of subdirectory associated with configuration

<<Booted -> Configured>>

-Take the FHiCL documents from the configuration

-Adjust them for bookkeeping purposes (based on # of eventbuilders, etc.)
-Send the artdag "init" transition w/ the FHiCL documents

<<Configured -> Configured>>
—Repeat the steps from the <<Booted -> Configured>> case

<<Stopped -> Configured>>
-Send the artdag "shutdown" transition
-Repeat the steps from the <<Booted -> Configured>> case

L1777 70777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777177777777777
L1717 70070777777177777717777771777

n Run n
Argument (s) : 1
-Run #

<<Configured -> Running>>
-Send the artdag "start" transition w/ the run #
—-Execute optional experiment-specific "experiment_run ()" function (unless overridden, this is a no-op)

<<Stopped -> Running>>
—Repeat the steps from the <<Configured -> Running>> case

N N N Y,
L1717 7707777777771777177717771777777

"Stop"
Argument (s): O

<<Running -> Stopped>>

—-Execute optional experiment-specific "experiment_stop ()" function (unless overridden, this is a no-op)
-Send the artdag "stop" transition

L1717 777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777177777777777
L1717 770777777777177777717777771777

"Shutdown"
Argument (s): 0

<<Stopped -> Initialized>>
-Send the artdag "shutdown" transition

-Kill the artdag processes

<<Configured -> Initialized>>

04/11/2021 2/3



—Same steps as <<Stopped -> Initialized>>

<<Booted -> Initialized>>
-Kill the artdag processes

L1777 007 777707777 77777 7777777 7777777777777777777777777777777777777777777777777777777777777777777177777777777
L1717 7 0070777007177 777717777771777

"Terminate"
Argument (s): 0

<<ANY STATE -> Terminated>>

—-If in running state, make every effort to close output file and shut down hardware cleanly (i.e., attempt sto
p transition, etc.)

-Kill artdag processes

-Kill DAQInterface

#2 - 12/20/2016 05:21 PM - John Freeman
- Status changed from New to Resolved

- % Done changed from 20 to 100

The needed SDAQ_*.sh scripts have been added to artdag-utilities-daqginterface (http://cdcvs.fnal.gov/projects/artdag-utilities-daginterface) via
commit 23a67b638a8fdb58e243b8436ea31dedbefbf783 , and I've been able to control DAQInterface by running the rundaq.py script from the commit
b49c0fac51e6972876c56256d581f0bc130cf5c version of artdag-utilities-sdaginterface after commenting/uncommenting the relevant lines in
rundag.py so that it uses the cmdlineControllnput module for input (i.e., takes commands at the command line).

#3 - 01/13/2017 04:41 PM - Eric Flumerfelt
- Project changed from artdaq to artdaq Utilities

- Category set to 430

#4 - 02/10/2017 01:07 PM - Eric Flumerfelt

- Category changed from artdaq-utilities to artdag-daqinterface

04/11/2021 3/3


http://cdcvs.fnal.gov/projects/artdaq-utilities-daqinterface
http://www.tcpdf.org

